27 research outputs found

    Dust grain properties in atmospheres of AGB stars

    Get PDF
    We present self-consistent dynamical models for dust driven winds of carbon-rich AGB stars. The models are based on the coupled system of frequency-dependent radiation hydrodynamics and time-dependent dust formation. We investigate in detail how the wind properties of the models are influenced by the micro-physical properties of the dust grains that enter as parameters. The models are now at a level where it is necessary to be quantitatively consistent when choosing the dust properties that enters as input into the models. At our current level of sophistication the choice of dust parameters is significant for the derived outflow velocity, the degree of condensation and the estimated mass loss rates of the models. In the transition between models with and without mass-loss the choice ofmicro-physical parameters turns out to be very significant for whether a particular set of stellar parameters will give rise to a dust-driven mass loss or not.Comment: 10 pages, 3 figures. To appear in: Modelling of Stellar Atmospheres, N.E. Piskunov, W.W. Weiss, D.F. Gray (eds.), IAU Symposium Vol. xxx. Proceedings for the IAU Symposium 210, Uppsala, June 200

    Dynamic model atmospheres of cool giants

    Full text link
    Cool giant stars are highly dynamical objects, and complex micro-physical processes play an important role in their extended atmospheres and winds. The interpretation of observations, and in particular of high-resolution IR spectra, requires realistic self-consistent model atmospheres. Current dynamical models include rather detailed micro-physics, and the resulting synthetic spectra compare reasonably well with observations. A transition from qualitative to quantitative modelling is taking place at present. We give an overview of existing dynamical model atmospheres for AGB stars, discussing recent advances and current trends in modelling, including 3D 'star-in-a-box' models. When comparing synthetic spectra and other observable properties resulting from dynamical models with observations we focus on the near- and mid-IR wavelength range.Comment: 12 pages, 3 figures, to be published in Proc. of ESO Workshop on High Resolution Infrared Spectroscopy in Astronomy, eds. Kaeufl H.U., Siebenmorgen R., Moorwood A., ESO Astrophysics Symposia, Springe

    Intense Mass Loss from C-rich AGB Stars at low Metallicity?

    Full text link
    We argue that the energy injection of pulsations may be of greater importance to the mass-loss rate of AGB stars than metallicity, and that the mass-loss trend with metallicity is not as simple as sometimes assumed. Using our detailed radiation hydrodynamical models that include dust formation, we illustrate the effects of pulsation energy on wind properties. We find that the mass-loss rate scales with the kinetic energy input by pulsations as long as a dust-saturated wind does not occur, and all other stellar parameters are kept constant. This includes the absolute abundance of condensible carbon (not bound in CO), which is more relevant than keeping the C/O-ratio constant when comparing stars of different metallicity. The pressure and temperature gradients in the atmospheres of stars, become steeper and flatter, respectively, when the metallicity is reduced, while the radius where the atmosphere becomes opaque is typically associated with a higher gas pressure. This effect can be compensated for by adjusting the velocity amplitude of the variable inner boundary (piston), which is used to simulate the effects of pulsation, to obtain models with comparable kinetic-energy input. Hence, it is more relevant to compare models with similar energy-injections than of similar velocity amplitude. Since there is no evidence for weaker pulsations in low-metallicity AGB stars, we conclude that it is unlikely that low-metallicity C-stars have a lower mass-loss rate, than their more metal-rich counterparts with similar stellar parameters, as long as they have a comparable amount of condensible carbon.Comment: 4 pages, 3 figures. Accepted for publication in A&A. Updated after language editing. Additional typos fixe

    Atmospheric dynamics in carbon-rich Miras. I. Model atmospheres and synthetic line profiles

    Full text link
    Atmospheres of evolved AGB stars are heavily affected by pulsation, dust formation and mass loss, and they can become very extended. Time series of observed high-resolution spectra proved to be a useful tool to study atmospheric dynamics throughout the outer layers of these pulsating red giants. Originating at various depths, different molecular spectral lines observed in the near-infrared can be used to probe gas velocities there for different phases during the lightcycle. Dynamic model atmospheres are needed to represent the complicated structures of Mira variables properly. An important aspect which should be reproduced by the models is the variation of line profiles due to the influence of gas velocities. Based on a dynamic model, synthetic spectra (containing CO and CN lines) were calculated, using an LTE radiative transfer code that includes velocity effects. It is shown that profiles of lines that sample different depths qualitatively reproduce the behaviour expected from observations.Comment: accepted by A&A, 12 pages, 9 figure

    Period and chemical evolution of SC stars

    Full text link
    The SC and CS stars are thermal-pulsing AGB stars with C/O ratio close to unity. Within this small group, the Mira variable BH Cru recently evolved from spectral type SC (showing ZrO bands) to CS (showing weak C2). Wavelet analysis shows that the spectral evolution was accompanied by a dramatic period increase, from 420 to 540 days, indicating an expanding radius. The pulsation amplitude also increased. Old photographic plates are used to establish that the period before 1940 was around 490 days. Chemical models indicate that the spectral changes were caused by a decrease in stellar temperature, related to the increasing radius. There is no evidence for a change in C/O ratio. The evolution in BH Cru is unlikely to be related to an on-going thermal pulse. Periods of the other SC and CS stars, including nine new periods, are determined. A second SC star, LX Cyg, also shows evidence for a large increase in period, and one further star shows a period inconsistent with a previous determination. Mira periods may be intrinsically unstable for C/O ~ 1; possibly because of a feedback between the molecular opacities, pulsation amplitude, and period. LRS spectra of 6 SC stars suggest a feature at wavelength > 15 micron, which resembles one recently attributed to the iron-sulfide troilite. Chemical models predict a large abundance of FeS in SC stars, in agreement with the proposed association.Comment: 14 pages, 20 figures. MNRAS, 2004, accepted for publication. Janet Mattei, one of the authors, died on 22 March, 2004. This paper is dedicated to her memor

    Dust formation in winds of long-period variables. V. The influence of micro-physical dust properties in carbon stars

    Get PDF
    We present self-consistent dynamical models for dust-driven winds of carbon-rich AGB stars. The models are based on the coupled system of frequency-dependent radiation hydrodynamics and time-dependent dust formation. We investigate in detail how the wind properties of the models are influenced by the micro-physical properties of the dust grains that are required by the description of grain formation. The choice of dust parameters is significant for the derived outflow velocity, the degree of condensation and the resulting mass loss rates of the models. In the transition region between models with and without mass loss the choice ofmicro-physical parameters turns out to be very significant for whether a particular set of stellar parameters will give rise to a dust-driven mass loss or not. We also calculate near-infrared colors to test how the dust parameters influence the observable properties of the models, however, at this point we do not attempt to fit particular stars.Comment: 13 pages, 8 figures, A&A in pres

    Dust and molecular shells in asymptotic giant branch stars - Mid-infrared interferometric observations of R Aql, R Aqr, R Hya, W Hya and V Hya

    Full text link
    Mid-IR (8 - 13 micron) interferometric data of four oxygen-rich AGB stars (R Aql, R Aqr, R Hya, and W Hya) and one carbon-rich AGB star (V Hya) were obtained with MIDI/VLTI between April 2007 and September 2009. The spectrally dispersed visibility data are analyzed by fitting a circular fully limb-darkened disk (FDD). Results. The FDD diameter as function of wavelength is similar for all oxygen-rich stars. The apparent size is almost constant between 8 and 10 micron and gradually increases at wavelengths longer than 10 micron. The apparent FDD diameter in the carbon-rich star V Hya essentially decreases from 8 to 12 micron. The FDD diameters are about 2.2 times larger than the photospheric diameters estimated from K-band observations found in the literature. The silicate dust shells of R Aql, R Hya and W Hya are located fairly far away from the star, while the silicate dust shell of R Aqr and the amorphous carbon (AMC) and SiC dust shell of V Hya are found to be closer to the star at around 8 photospheric radii. Phase-to-phase variations of the diameters of the oxygen-rich stars could be measured and are on the order of 15% but with large uncertainties. From a comparison of the diameter trend with the trends in RR Sco and S Ori it can be concluded that in oxygen-rich stars the overall larger diameter originates from a warm molecular layer of H2O, and the gradual increase longward of 10 micron can be most likely attributed to the contribution of a close Al2O3 dust shell. The chromatic trend of the Gaussian FWHM in V Hya can be explained with the presence of AMC and SiC dust. The observations suggest that the formation of amorphous Al2O3 in oxygen- rich stars occurs mainly around or after visual minimum. However, no firm conclusions can be drawn concerning the mass-loss mechanism.Comment: 32 pages (including 7 pages appendix), 10 figure

    Production of dust by massive stars at high redshift

    Full text link
    The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3-40 Msun using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and Astrophysics Revie
    corecore